

«Feldroboter» zur Reduktion des PSM-Einsatzes

101 Jahre Landtechnik Schweiz

- 1924: Rund 200 Traktorenbesitzer in der Schweiz
- 1926: Rapid bringt einen Motormäher auf den Markt
- 1929: Hürlimann und Bührer bauen die ersten Traktoren

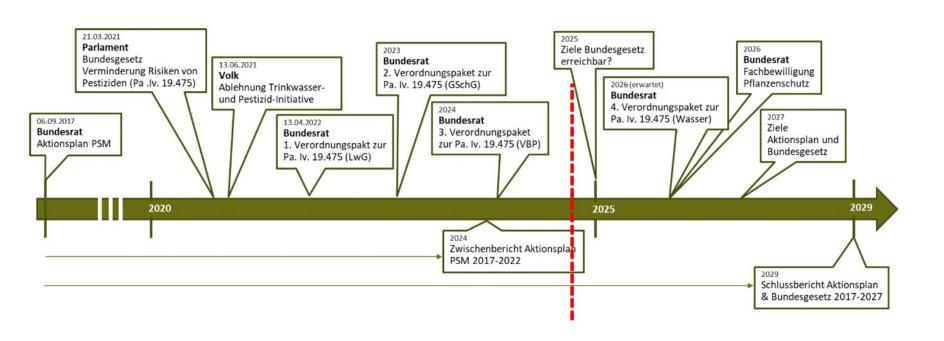
Trends in der Entwicklung von Landmaschinen früher:

Grösser, schneller, stärker, effizienter, ergonomischer

Trends in der Entwicklung von Landmaschinen heute:

> Smarter, nachhaltiger, präziser, autonomer

Einflüsse auf landtechnische Entwicklungstrends


- Regulierungen, Umweltauflagen
- Produktepreise, Kostendruck
- Lebensmittelqualität
- Öffentliche Meinung und Wahrnehmung
- Klimaveränderung, Wassermanagement
- Technische Errungenschaften von «Dritten»
- «Digitalisierung»

Ausgangslage rund um die Anwendung von PSM

- Intensive, wenn auch nicht immer objektive Diskussion
- Politische Vorstösse auf nahezu allen Ebenen
- Aktionsplan «Pflanzenschutzmittel» des Bundesrats
- Parlamentarische Initiative Pa. Iv. 19.475 («Absenkpfad»)
- Revision der Chemikalien-Risikoreduktions-Verordnung (ChemRRV)
- Motion Salzmann (21.4383): Umweltschonende landwirtschaftliche Maschinen und Verfahren unterstützen
 - neue Massnahmen/finanzielle Hilfe im Rahmen der Strukturverbesserungsverordnung (ab 2025)

Strukturverbesserungsfachtagung 11.06.2025

Ausgangslage Robotik/Autonomie

- Wann ist eine Maschine, ein Fahrzeug wirklich autonom unterwegs?
- Häufig sind solche Maschinen «nur» automatisiert:
 - Wiederkehrende Abläufe automatisiert
 - (Negativen) Fahrer-Einfluss verringern
 - Maschinenpotenzial besser ausnützen
- Treiber f
 ür autonome Fahrzeugkonzepte
 - Maschinengrössen/-gewichte reduzieren
 - Investitions-/Verfahrenskosten verringern
 - Fachkräftemangel
 - Allgemeine Verfügbarkeit der Technologien

Anforderungen an einen Feldroboter

- Selbstständiges Navigieren, Erkennen von Feldgrenzen (Geofencing)
- Erkennen von Hindernissen (stationär, mobil) mit entsprechendem Notstopp
- Frkennen von Pflanzenreihen.
- Unterscheidung Nutzpflanzen/Unkräuter
- Erkennen von Schadorganismen (Pilze, Insekten etc.)
- Ausführen einer entsprechenden Aktivität
- Zusammenspiel von GPS/RTK, Kameras, Radar, LiDAR, Ultraschall und KI

Anforderungen an einen Feldroboter

- Selbstständiges Navigieren, Erkennen von Feldgrenzen (Geofencing)
- Erkennen von Hindernissen (stationär, mobil) mit entsprechendem Notstopp
- Erkennen von Pflanzenreihen.
- Unterscheidung Nutzpflanzen/Unkräuter
- Erkennen von Schadorganismen (Pilze, Insekten etc.)
- Ausführen einer entsprechenden Aktivität
- Zusammenspiel von GPS/RTK, Kameras, Radar, LiDAR, Ultraschall und KI

Problemzonen

- Was im «Labor» gut funktioniert, kann in der «Natur» Probleme bereiten
 - Lichteinfall, Wachstumsphasen, Witterungsbedingungen, Hanglagen etc.
 - Beispiel Blacke/Rumex

Rechtliche Situation: öffentlicher Raum/nicht öffentlicher Raum

Techniken zur PSM-Reduktion

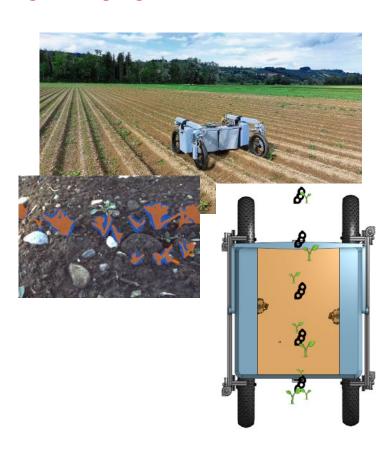
- Bandspritzung
 - Für Reihenkulturen geeignet
 - Es wird nur die Pflanzreihe behandelt
 - Zwischenräume bleiben unbehandelt oder werden gehackt
 - Möglich mit herkömmlichen Feldspritzen
 - Aber Düsenabstände und Spritzkegel müssen stimmen
 - Beispiel: Horsch «Leeb CS»

Techniken zur PSM-Reduktion

- Smart- oder Spot-Spraying
 - Selektiv, punktgenau applizierende Feldspritze
 - Appliziert nur dort, wo es nötig ist
 - Erkennung in Echtzeit mit RBG-Kameras und KI oder offline mittels zuvor erstellten Applikationskarten
 - Spezielle Düsen/Düsenschaltungen erforderlich
 - Kommunikation Traktor-Anbaugerät über Isobus
 - Oft in ARGE entwickelt (z.B. Bosch, BASF und Amazone)
 - Beispiele I: Amazone, Agrifac, Berthoud, Dammann, Kuhn (+/- konventionelle Feldspritzen)
 - Beispiele II: Ecorobotix, Rumex, RumboJet (spezielle Einzelpflanzen-Spritzen)

Techniken zur PSM-Reduktion

- Smart- oder Spot-Spraying
 - Beispiele: Ecorobotix, Rumex, RumboJet



- Laser
 - Beispiel: Roboter «Caterra»
 - Elektrisch betrieben
 - GPS-Navigation, Feldgrenzen festlegen
 - Selektive Behandlung
 - Kamera-Erkennung, Schutzzone Nutzpflanze
 - Deep-Learning-Algorithmus
 - Beispiel: Anbaugerät «Laser-Weeder» von Carbon Robotics

- Heisswasser
 - Wassertemperatur nahe Siedepunkt
 - Rotationsdüse mit Hochdruck
 - Selektive Behandlung
 - Als Handgeräte für kleine und professionelle Anwendungen
 - Als Roboter in Echtzeit (Kameras) oder mittels Applikationskarten (Versuche Agroscope)
 - Als Anbaugerät am Traktor (Versuch FH Nürtingen)

- Elektro-Herbizid
 - Beispiel: Zasso/AgXtend «Xpower», Vertrieb über CNH-Kanäle
 - Hochspannung (bis 8000 V), erzeugt mit mitgeführtem Generator
 - Nicht selektiv
 - Zerstörung der Zellstruktur

- Hacken
 - Zwischen und in den Reihen.
 - Kamerasteuerung entlang der Reihe, Verschieberahmen
 - Kamerasteuerung mit KI für Hackvorgang in der Reihe
 - Aussaat mit GPS-/RTK-Genauigkeit
 - Viele verschiedene Hersteller auf den Markt

- Säen und Hacken
 - Zwischen und in den Reihen.
 - Aussaat mit GPS-Spurführung und RTK-Genauigkeit
 - Geo-referenziertes Hacken
 - Beispiel: Sä- und Hackroboter Farmdroid

Reduktion PSM-Einsatz (Fungizide, Insektizide)

- UV-Boosting
 - Beispiel: UV-Boosting/Kubota
 - Stärkung der Abwehrkräfte von Pflanzen durch Bestrahlung mit UV-C-Blitzen
 - Serienreif für Obst-, Beeren- und Rebkulturen
 - Direkte Bekämpfung von Pilzbefall bei Erdbeeren
 - Wirkung in Abhängigkeit der Wellenlänge

Fazit

- Autonome, robotisierte Landtechnik heute verfügbar, einiges schon serienreif, vieles im Prototypen- oder Konzept-Stadium
- Moderne (und teure) Maschinen verlangen eine hohe Auslastung
- Standards werden gefordert, Firmen sollten mehr zusammenarbeiten (v.a. KI)
- Neue (nachhaltige) Technologien sind oft nur mit Finanzhilfen zu stemmen
- Frei verfügbares und flächendeckendes RTK-Netz für gewisse Anwendungen nötig
- Zonenbildung für teilflächenspezifische Bewirtschaftung und Anwendung von Applikationskarten erwünscht

Herzlichen Dank für die Aufmerksamkeit!

